Tiny wobbles and faint twinkles that have led astronomers to nearly 5,000 new worlds.
Subscribe and turn on notifications ? so you don't miss any videos: http://goo.gl/0bsAjO
For a tour of some of the odd exoplanets scientists have found, watch part one, here: https://youtu.be/lrAFaONyLtU
Pluto was discovered in January of 1930, a tiny speck on a photographic plate (https://www.planetary.org/space-images/the-pluto-discovery-plates). It was the most distant world humans had ever seen. Decades later, even the powerful Hubble Space Telescope struggled to get a good look at the dwarf planet – the Hubble image of Pluto is just a sickly yellow smudge (https://esahubble.org/images/opo1006h/).
So when astronomers set out to search for planets around other stars (aka “exoplanets), they knew it wouldn’t be easy. Our closest neighbor, a little red dwarf named Proxima Centauri, is 7,000 times further away from us than Pluto. Any planets in orbit around it would likely get lost in the glare of bright starlight.
“Trying to see an earthlike planet across interstellar distances,” writes astrophysicist Adam Frank, “would be like looking from New York City to AT&T Park in San Francisco, where the Giants play, and making out a firefly next to one of the stadium spotlights.”
“To detect or study an exoplanet,” says Sara Seager, a planet-hunting astrophysicist at MIT, “we have to work with the star.”
Astronomers started monitoring stars for tiny changes that could hint at the presence of one or more planets. Early efforts focused on the search for a wobble. The pull of a planet’s gravity causes a star to circle their mutual center of gravity - and from our vantage point the star seems to swing back and forth. In 1995, a Swiss team picked up the signature of just such a wobble in the starlight from a yellow dwarf in the Pegasus constellation. They had found 51-Pegasi b: the first exoplanet around a sun-like star.
Over the next few decades, astrophysicists honed a whole range of planet-hunting tools. They learned to spot the way planets can change the shape of their stars, how a planet’s gravity can bend light, and the periodic drop in brightness when a planet passes between its star and Earth. Telescopes have become more precise and powerful, and computers have become better at sifting out signal from noise. Today, we’re closing in on 5,000 known exoplanets (https://exoplanetarchive.ipac.caltech.edu/).
Fifty years ago, astronomers had no idea what percentage of stars had planets. A common educated guess was 20%, but for all we knew it could have been zero. But based on what we’ve seen since, it seems possible that every star has at least one planetary companion.
Now that we know exoplanets exist, it’s time to learn more about them. What are they made of? How did they form? And, most tantalizing, could they harbor life? We’re like sailors who have spotted a tiny rise of land on the horizon. Now we want to study this new island’s geology and biology and make contact with any inhabitants … but we have to do it all from aboard our ship, floating trillions of miles out at sea.
~~~
Presented by the Center for Matter at Atomic Pressures (CMAP) at the University of Rochester,
a National Science Foundation (NSF) Physics Frontier Center, Award PHY-2020249
https://www.rochester.edu/cmap/
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
~~~
Further reading:
The discovery of 51 Pegasi b:
https://www.nature.com/articles/378355a0
https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/
The potential of the James Webb Space Telescope
https://www.vox.com/science-and-health/22664709/james-webb-space-telescope-launch-date-december-science-hubble
The Smallest Lights in the Universe - Sara Seager’s memoir
https://www.kirkusreviews.com/book-reviews/sara-seager/the-smallest-lights-in-the-universe/
Light of the Stars: Alien Worlds and the Fate of the Earth
https://www.adamfrankscience.com/light-of-the-stars
The fraught and fractious history of failed exoplanet discoveries:
https://astronomy.com/bonus/phantoms
Make sure you never miss behind the scenes content in the Vox Video newsletter, sign up here: http://vox.com/video-newsletter
Vox.com is a news website that helps you cut through the noise and understand what's really driving the events in the headlines. Check out http://www.vox.com
Support Vox's reporting with a one-time or recurring contribution: http://vox.com/contribute-now
Shop the Vox merch store: vox.com/store
Watch our full video catalog: http://goo.gl/IZONyE
Follow Vox on Facebook: http://facebook.com/vox
Follow Vox on Twitter: http://twitter.com/voxdotcom
Follow Vox on TikTok: http://tiktok.com/@voxdotcom
BetaSeries est l’application de référence pour les fans de séries qui regardent les plateformes de streaming. Téléchargez l’application gratuitement, renseignez les séries que vous aimez, et recevez instantanément les meilleures recommandations du moment.
© 2024 BetaSeries - Tout contenu externe demeure la propriété du détenteur légitime des droits.